EMCal Depth

A.Bazilevsky
YR-Calorimetry TF Meeting
August 11, 2020

EMCal response to e

4 GeV/c *e*

PWO EMCal:

$$\frac{\sigma_E}{E} \sim \frac{2.5\%}{\sqrt{E(GeV)}}$$

EMCal response: fit to Gaus

 $20 X_0$

Effect of tails may also be important!

EMCal resolution vs depth

From Gaus fit

PWO EMCal:

$$\frac{\sigma_E}{E} \sim \frac{2.5\%}{\sqrt{E(GeV)}} \oplus b$$

Depth: b

16 X₀
18 X₀: 1.2%
20 X₀: 0.6%
22 X₀: 0.3%
25 X₀: 0.2%
40 X₀: 0.1%

Effective Resolution

For a particular cut, e.g. 2σ cut $(\varepsilon_e \sim 98\%)$:

Define E_{cut} for which $N(E>E_{cut})=98\%$

$$\sigma_{\rm eff} = (E_{\rm mean} - E_{\rm cut})/2$$

For Gaussian shape:

$$\sigma_{\rm eff} = \sigma_{\rm Gaus_fit}$$

Tails lead to:

$$\sigma_{\rm eff} > \sigma_{\rm Gaus_fit}$$

Effective resolution vs depth

Solid: from fit to Gaus

Dashed: Effective (for $\varepsilon_{\rm e}$ =95%)

PWO EMCal:

$$\frac{\sigma_E}{E} \sim \frac{2.5\%}{\sqrt{E(GeV)}} \oplus b$$

Depth: b b_{eff}

16 X₀
18 X₀: 1.2%
20 X₀: 0.6%
22 X₀: 0.3% 1.0%
25 X₀: 0.2% 0.4%
40 X₀: 0.1% 0.1%

>22 X₀ looks "ok"

Different EMCals

 $16 X_0$ 18 X₀ 20 X₀ 22 X₀ $25 X_0$

40 X₀

$$\frac{\sigma_E}{E} \sim \frac{2.5\%}{\sqrt{E(GeV)}} \oplus 1\%$$

$$\frac{\sigma_E}{E} \sim \frac{7\%}{\sqrt{E(GeV)}} \oplus 2\%$$

$$\frac{\sigma_E}{E} \sim \frac{7\%}{\sqrt{E(GeV)}} \oplus 2\%$$
 $\frac{\sigma_E}{E} \sim \frac{12\%}{\sqrt{E(GeV)}} \oplus 2\%$

>22 X₀ looks "ok"

>20 X₀ looks "ok"

>18 X₀ looks "ok"

Backup

Solid: from fit to Gaus

Dashed: Effective (for $\varepsilon_{\rm e}$ =90%)

Solid: from fit to Gaus

Dashed: Effective (for $\varepsilon_{\rm e}$ =95%)

Solid: from fit to Gaus

Dashed: Effective (for $\varepsilon_{\rm e}$ =98%)

Quantifying the tail

 $N(<2\sigma)/N(ALL) = 0.023$ for pure Gaussian shape

At least 22 X₀ required